Рисунок 8 - Схема ИТ на базе ОУ
Недостаток схемы очевиден: в случае подключения нагрузок к общей шине ОУ должен иметь “плавающий” источник питания. При этом и управляющий вход ИТ будет “плавающим”. Этого можно избежать, если применить транзисторные развязки.
Ниже приведены схемы таких ИТ, для “заземленных” нагрузок. На рис. 9 представлена схема ИТ с биполярным транзистором. Обратная связь создает на резисторе R падение напряжения, равное Uип - Uвх, которое в свою очередь определяет эмиттерный (а следовательно и выходной) ток
Iвых = (Uип - Uвх)/R.
Несовершенство этого ИТ проявляется лишь в том, что небольшой базовый ток может немного изменяться в зависимости от напряжения Uкэ.
Качество работы схемы может быть улучшено, если вместо VТ1 применить составной транзистор, поскольку погрешность возникает в связи с тем, что ОУ фактически стабилизирует эмиттерный ток, а через нагрузку проходит коллекторный ток. Если вместо биполярного транзистора использовать полевой транзистор, то проблема будет полностью решена, т. к. входной ток полевого транзистора незначителен.
Рисунок 9 - Схема ИТ на базе ОУ с выходным БТ
В рассмотренной схеме (рис. 9) выходной ток пропорционален величине, на которую напряжение, приложенное к неинвертирующему входу ОУ, ниже, чем напряжение питания Uип. Иными словами, напряжение, с помощью которого программируется работа схемы, измеряется относительно шины питания Uип (падение напряжения UR1). Это создает проблемы при подаче Uвх от внешнего источника.
Недостаток можно устранить, применив развязывающий ОУ с транзистором обратной проводимости, для которого управляющее входное напряжение измеряется относительно общей шины (рис.10).
Рисунок 10 - Схема с двумя ОУ
Транзистор VТ1 (n-р-n типа) служит для преобразования входного управляющего напряжения (измеряемое относительно земли) во входное напряжение, измеряемое относительно Uип для оконечного ИТ. Однако следует иметь в виду, что в этой схеме ОУ должен работать при входных напряжениях близких или равных Uип. Перейти на страницу: 1 2 3
Советуем почитать:
Микроконтроллеры для начинающих. И не только Микроконтро́ллер (англ. Micro Controller Unit, MCU) – микросхема, предназначенная для управления электронными устройствами. Типичный микроконтроллер сочетает в себе функции пр ...
Проектирование цифрового регулятора для электропривода с фазовой синхронизацией Разработка новых эффективных технологических процессов, различных машин и приборов непосредственно связана с повышением требований к лежащим в их основе электроприводам по точности, быст ...
Методы и средства передачи информации в новых устройствах железнодорожной автоматики и телемеханики Классификация линий передачи по назначению – Локальные шины контроллеров (ISA, PCI, VME), – Цифровые промышленные сети (RS-485, RS-422, CAN, PROFIBAS, IL-BAS, Fo ...