Современные средства цифрового формирования и обработки сигналов позволяют получать цифровые модулированные ВЧ или ПЧ сигналы с частотами до сотен МГц. Как известно из параграфа 2.2.2 настоящего учебного пособия, существуют высококачественные быстродействующие ЦАП, позволяющие перевести цифровой сигнал в аналоговую форму для подачи (через фильтр) на вход усилителя мощности передатчика, либо на вход смесителя, повышающего частоту сигнала до необходимого значения перед его усилением по мощности. Такой вариант имеет свои преимущества - возможность формировать сложные многочастотные сигналы (например, 8 модулированных несущих с разносом частот в 100 кГц одновременно), позволяют менять все параметры излучения, в том числе и стандарт связи путем смены только программного обеспечения. Недостатком их можно считать относительно низкую экономичность и наличие заметных паразитных составляющих в спектре сигнала.
Наиболее простым вариантом цифрового передатчика с цифровым выходом на ПЧ/ВЧ можно считать комбинацию из цифрового сигнального процессора (DSP) и прямого цифрового синтезатора частоты (DDS), рис. 2.1. При этом DDS должен иметь одиночный (не квадратурный) выход, как, например, AD7008 (рис.2.4.1.5), AD9830 (рис.2.4.1.4). Такой передатчик может формировать сигналы с амплитудно-фазовыми видами модуляции (АМ, ЧМ, SSB, PSK, FSK, QAM) на частотах до десятков МГц.
Рис. 2.1.
Так как тактовые частоты современных DDS не превышают сотен МГц, а максимальная рабочая частота DDS может быть около 0.4 от тактовой, то для повышения несущей частоты требуются дополнительные элементы наилучшим вариантом здесь является квадратурный СВЧ модулятор в интегральном исполнении. Принцип его работы описан в той же главе. Структурная схема такого передатчика, способного работать на частотах до 2.5 ГГц, показана на рис. 2.2.
Рис. 2.2.
Типовая структурная схема более совершенного цифрового приемопередатчика показана на рис. 2.3. Она является стандартной для современных цифровых приемопередатчиков и может быть реализована, в зависимости от требований к частотному диапазону и к алгоритму обработки сигнала, на различной элементной базе. В частности, ядро формирования цифровых ВЧ сигналов
может быть выполнено на основе:
· стандартного цифрового сигнального процессора (DSP) - если требуется сигнал с относительно невысокой частотой - до 1 МГц;
· ПЛИС (FPGA) очень высокой степени интеграции, т.е. с эквивалентным количеством вентилей, исчисляемым миллионами;
· стандартных ИМС нескольких типов - цифрового сигнального ВЧ процессора приемника (RSP) в приемном тракте; цифрового сигнального ВЧ процессора передатчика (TSP) в передающем тракте, который может быть заменен (как вариант исполнения передающего тракта без отдельного ВЧ ЦАП) на цифровой модулятор, модулируемый DDS или цифровой преобразователь частоты вверх (QDUC); элементная база этого варианта передающего тракта была подробно рассмотрена в предыдущем разделе.
Рис. 2.3.
Для сравнения некоторых возможностей перечисленных выше стандартных ИМС, задействованных в цифровом приемопередатчике VersaCOMM фирмы Analog Devices, приведена табл. 2.1. Перечислим названия этих ИМС (описание работы некоторых из них дано в разделе 2):
RSP
: AD6620 (1-2-х-канальная, 65 MSPS), AD6624 (1-2-4-х-канальная, 80 MSPS), AD6634 (2-х-канальная W-CDMA, 80 MSPS);
TSP
:
AD6622 (1-2-4-х-канальная, 75 MSPS), AD6623 (1-2-4-х-канальная, 104 MSPS);
QDUC
: AD9853 (65 МГц, QPSK, 16-QAM цифровой модулятор с 10-разрядным ЦАП), AD9856 (200 MSPS квадратурный цифровой преобразователь частоты с 12-разрядным ЦАП), AD9857 (200 MSPS квадратурный цифровой преобразователь частоты с 14-разрядным ЦАП).
Табл.3.2.1.
Встроенные возможности VersaCOMM | RSP | TSP | QDUC |
Преобразование частоты с высокоскоростным генератором с цифровым управлением (NCO) | + | + | + |
Автоматическая регулировка уровня сигнала | + | + | - |
Нецелочисленное изменение частоты выборки | + | + | - |
Программное управление характеристиками фильтра | + | + | + |
Цифровая модуляция (GMSK, QPSK, 8-PSK) | - | + | + |
Интерфейс JTAG и др. | + | + | - |
Интерполяционные фильтры | - | + | + |
Встроенный на кристалл ВЧ ЦАП | - | - | + |
Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля Современную микроэлектронику трудно представить без такой важной составляющей, как микроконтроллеры. Микроконтроллеры незаметно завоевали весь мир. Микроконтроллерные технологии очень эф ...
Кривые линии и поверхности, их применение в радиоэлектронике и автоматике Кривые линии и поверхности их применение в радиоэлектронике и автоматике. Этот раздел курса имеет особое значение для графической подготовки инженера. Внешняя и внутренняя форма дета ...
Многопроцессорный вычислительный комплекс Вычислительная техника в своем развитии по пути повышения быстродействия ЭВМ приблизилась к физическим пределам, которые обусловлены ограниченной скоростью распространения сигналов в лин ...